Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Immunol Med ; 45(2): 119-127, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35130134

RESUMO

Th17 cells are implicated in the pathogenesis of several autoimmune diseases. During the inflammation, Th17 cells exposed to IL-12 can shift towards the Th1 phenotype. These shifted cells are defined as 'non-classic Th1 cells'. Th17-derived non-classic Th1 cells play a critical role in late-onset chronic inflammatory diseases and are more pathogenic than the unshifted Th17 cells. Eomes is a transcription factor highly expressed in non-classic Th1 cells. To study the functional role of Eomes without genetic alteration, novel recombinant protein, ntEomes-TMD, was generated by fusing TMD of Eomes and Hph-1-PTD that facilitate intracellular delivery of its cargo molecule. ntEomes-TMD was delivered into the nucleus of the cells without influencing the T cell activation and cytotoxicity. ntEomes-TMD specifically inhibited the Eomes- and ROR-γt-mediated transcription and suppressed the Th1 and Th17 differentiation. Interestingly, ntEomes-TMD blocked the generation of non-classic Th1 cells from Th17 cells, leading to the inhibition of IFN-γ and GM-CSF secretion. In EAE, ntEomes-TMD alleviated the symptoms of EAE, and the combination treatment using ntEomes-TMD and anti-IL-17 mAb together showed better therapeutic efficacy than anti-IL-17 mAb treatment. The results suggest that ntEomes-TMD can be a new therapeutic reagent for treating chronic inflammatory diseases associated with non-classic Th1 cells.


Assuntos
Encefalomielite Autoimune Experimental , Células Th17 , Animais , Diferenciação Celular , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Inflamação , Células Th1/metabolismo , Células Th1/patologia , Células Th17/metabolismo , Células Th17/patologia
3.
Front Immunol ; 13: 1054472, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591260

RESUMO

T helper 1 cells (Th1 cells) and T helper 17 cells (Th17 cells) play pivotal roles in the pathogenesis of various autoimmune diseases, including psoriasis and inflammatory bowel disease (IBD). Signal transducer and activator of transcription 1 (STAT1) regulates the Th1 and Th17 cell lineage commitment at an early stage and maintains their immunological functions in vitro and in vivo. The previous strategies to block STAT1 functions to treat autoimmune diseases inhibit Th1 cell activity but simultaneously cause hyper-activation of Th17 cells. Herein, to modulate the functions of pathogenic Th1 and Th17 cells without genetic modification in normal physiological conditions, we generated the nucleus-deliverable form of the transcription modulation domain of STAT1 (ndSTAT1-TMD), which can be transduced into the nucleus of the target cells in a dose- and time-dependent manner without affecting the cell viability and T cell activation signaling events. ndSTAT1-TMD significantly blocked the differentiation of naïve CD4+ T cells into Th1 or Th17 cells via competitive inhibition of endogenous STAT1-mediated transcription, which did not influence Th2 and Treg cell differentiation. When the gene expression profile of Th1 or Th17 cells after ndSTAT1-TMD treatment was analyzed by mRNA sequencing, the expression of the genes involved in the differentiation capacity and the immunological functions of Th1 or Th17 cells were substantially reduced. The therapeutic potential of ndSTAT1-TMD was tested in the animal model of psoriasis and colitis, whose pathogenesis is mainly contributed by Th1 or/and Th17 cells. The symptoms and progression of psoriasis and colitis were significantly alleviated by ndSTAT1-TMD treatment, comparable to anti-IL-17A antibody treatment. In conclusion, our study demonstrates that ndSTAT1-TMD can be a new therapeutic reagent for Th1/17 cell-mediated autoimmune diseases by modulating the functions of pathogenic Th1 and Th17 cells together.


Assuntos
Doenças Autoimunes , Colite , Psoríase , Animais , Células Th17 , Células Th1 , Colite/patologia , Psoríase/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...